Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize.
نویسندگان
چکیده
In NADP-malic enzyme-type C(4) plants such as maize (Zea mays L.), efficient transport of oxaloacetate and malate across the inner envelope membranes of chloroplasts is indispensable. We isolated four maize cDNAs, ZmpOMT1 and ZmpDCT1 to 3, encoding orthologs of plastidic 2-oxoglutarate/malate and general dicarboxylate transporters, respectively. Their transcript levels were upregulated by light in a cell-specific manner; ZmpOMT1 and ZmpDCT1 were expressed in the mesophyll cell (MC) and ZmpDCT2 and 3 were expressed in the bundle sheath cell (BSC). The recombinant ZmpOMT1 protein expressed in yeast could transport malate and 2-oxoglutarate but not glutamate. By contrast, the recombinant ZmpDCT1 and 2 proteins transported 2-oxoglutarate and glutamate at similar affinities in exchange for malate. The recombinant proteins could also transport oxaloacetate at the same binding sites as those for the dicarboxylates. In particular, ZmpOMT1 transported oxaloacetate at a higher efficiency than malate or 2-oxoglutarate. We also compared the activities of oxaloacetate transport between MC and BSC chloroplasts from maize leaves. The K(m) value for oxaloacetate in MC chloroplasts was one order of magnitude lower than that in BSC chloroplasts, and was close to that determined with the recombinant ZmpOMT1 protein. Southern analysis revealed that maize has a single OMT gene. These findings suggest that ZmpOMT1 participates in the import of oxaloacetate into MC chloroplasts in exchange for stromal malate. In BSC chloroplasts, ZmpDCT2 and/or ZmpDCT3 were expected to import malate that is transported from MC.
منابع مشابه
The maize golden2 gene defines a novel class of transcriptional regulators in plants.
In the C4 plant maize, three photosynthetic cell types differentiate: C4 bundle sheath, C4 mesophyll, and C3 mesophyll cells. C3 mesophyll cells represent the ground state, whereas C4 bundle sheath and C4 mesophyll cells are specialized cells that differentiate in response to light-induced positional signals. The Golden2 (G2) gene regulates plastid biogenesis in all photosynthetic cells during ...
متن کاملbundle sheath defective2, a Mutation That Disrupts the Coordinated Development of Bundle Sheath and Mesophyll Cells in the Maize Leaf.
Within the maize leaf primordium, coordinated cell division and differentiation patterns result in the development of two morphologically and biochemically distinct photosynthetic cell types, the bundle sheath and the mesophyll. The bundle sheath defective2-mutable1 (bsd2-m1) mutation specifically disrupts C4 differentiation in bundle sheath cells in that the levels of bundle sheath cell-specif...
متن کاملHill Reaction, Hydrogen Peroxide Scavenging, and Ascorbate Peroxidase Activity of Mesophyll and Bundle Sheath Chloroplasts of NADP-Malic Enzyme Type C(4) Species.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C(4) plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C(4) subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of ...
متن کاملPhotochemical properties of mesophyll and bundle sheath chloroplasts of maize.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C(4) plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a...
متن کاملDifferential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types.
Bundle sheath chloroplasts of maize leaves contain about one-fourth as much light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP-II) as do mesophyll chloroplasts. We have determined that this difference is, in part, the result of differential expression of different LHCP-II genes. We have prepared and partially characterized cDNA clones specific for six LHCP-II genes of maiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 45 2 شماره
صفحات -
تاریخ انتشار 2004